

Threat from Acid Sulfate Soils: Currency Creek, Finniss River and Black Swamp region

Rob Fitzpatrick^{1,2,3} Gerard Grealish, Paul Shand, Steve Marvanek, Brett Thomas, Nathan Creeper, Richard Merry and Mark Raven

¹Chief Research Scientist: CSIRO Land and Water ²Director and Professor: Centre for Australian Forensic Soil Science (CAFSS) ³ National Committee for Acid Sulfate Soils (NatCASS)

January, 2009

What are acid sulfate soils (ASS)?

The <u>nastiest</u> soils in the world! • Why?

AND

The most <u>benign</u> soils in the world! • Why?

Benign and nasty types of ASS materials in the Finniss river

August 2007

Release of:

- Sulfuric acid
- Iron
- Aluminium
- Mg-sulfate salts

What are acid sulfate soils?

What happens when pyrite in soils or sediments are disturbed or exposed?

pyrite + oxygen + water \rightarrow iron (aq) + sulfuric acid (aq)

Release and export of:

- Acid
- Iron
- Aluminium
- Other metals and heavy metals
- Consumption of oxygen
- Generation of monosulfidic black ooze

Sulfidic (= potential ASS material) Sulfuric (= actual ASS material)

August 2007

Benign: sulfidic material

pH 8.4

Release of:

- Sulfuric acid
- Iron
- Aluminium
- Mg-sulfate salts

Impacts of disturbing or exposing sulfides in ASS

Impacts of ASS disturbance may be:

- Environmental
- Engineering
- Human or animal health
- Economic

Environmental Acidification, salinity and metal release

August 2007

Nastiest

pH 1.3 to 2.5

January 2009

Release of:

- Sulfuric acid
- Iron
- Aluminium
- Mg-sulfate salts

Human health

RISKS: Metal release following oxidation **De-oxygenation of water column Noxious smells**

Acid tolerant mosquitoes & arboviruses

CSIRO. Acid Sulfate Soils

The Murray Pioneer

ING THE RIVERLAND AND NORTHERN MALLEE SINCE

Vhat a stinker!

Residents demand action

nell of decaving fish and rotten eag ags that has engulfed the

By CATHERINE MORGAN

The stench emanating from a near mp at Cobdogla is driving way tourists and affecting local busis and residents.

pong is being emitted from the gla evaporation basin, which has out since late last year becaus

on of decaying fish and ide (rotten cee) eas - fo

also organising a public meeting to discuss The smell has caused a sharp drop i tourist numbers, affecting businesses such as the Cobdogla Station Caravan Park, the general store and Cobdogla Club. Caravan Park owner Ian Willcourt had a

group booking for 20 people cancelled last week because of the odour. "The figures for January were dre ful, I can see the pong is going the business a fortune," Mr Wille The flow-on effect of this on other bus ous, it's really affectin

Monosulfidic Black Ooze (MBO) - accumulation along barrages

monosulfides (FeS)
De-oxygenation of water column
Noxious smells

Engineering impacts Cracking, shrinking, subsidence

Low bearing capacity High moisture content

irreversible shrinking
mosaic cracking effect
unevenly dry out

Engineering impacts Cracking, shrinking, subsidence

Low bearing capacity

High moisture content

- irreversible shrinking
- mosaic cracking effect
- unevenly dry out

Extensive soft sulfidic material + Monosulfidic Black Ooze:

Sulfuric cracking clay soil (drained wetlands adjacent to Finniss river)

Sulfuric material

pH < 3

Sulfidic material

Sulfuric material with cracks + water (pH 3.5) Finniss river – November 2008

pH 3.5

Saline (31 dS/m)

Sulfuric cracking clay soil with acid (pH 3.5) water in the cracks - adjacent to Finniss river)

Sulfuric cracking clay soil + standing water (pH 3.4) drained wetlands adjacent to Finniss river

Sulfuric material = pH < 3

Light yellowish mottles + precipitates

- e oxidised iron sulfides
- Yellow jarosite (iron sulfate mineral)

STANDING WATER = pH 3.4

Sulfidic material Depth > 90cm CSIRO. Acid Sulfate Soils

Sulfidic material = pH > 7= Unoxidised Iron sulfides: Dark grey and black

Sulfuric cracking clay soil with coatings of iron minerals (= store of acidity when rewetted)

Collecting coatings of iron minerals (pH 3.2), which stores acidity because when the soil is rewetted the mineral transforms and releases more acidity

Light yellowish iron sulfate mineral = "jarosite"

Sulfuric cracking <u>clay</u> and <u>sandy</u> ASS materials Currency Creek – Goolwa North = VAST

November 2008

Sulfuric cracking clay and sandy ASS materials Currency Creek: yellow and orange colours

Rewetting by rainfall events = yellow and orange colours

pyrite + air (oxygen) => acid (pH 1– 3) + iron oxides (yellow-green iron mineral) yellow-green iron mineral + water => orange iron oxide mineral

Sulfuric soils with "stored acidity" in coloured iron minerals Sandy in drained beaches

In presence of rain water the yellowishgreen mineral transforms to the orange mineral (schwertmannite mineral)

Sulfuric soil (Sandy in drained beaches) Contain "stored acidity" in coloured iron minerals

Sulfuric material Sandy in drained beaches

Sulfuric material

- (Has become acidic after drainage)
- pH < 4 (usually ranging from 3.5 to 2.5)
- Qxidised iron sulfides
 - with yellow mottles
 - Yearw jarosites and other iron-sulfate salts

Sulfidic material

(If disturbed becomes acidic)

- pH >4 (e.g. pH 6 to 7 = sea water)
- Unoxidised iron sulfides: Dark grey and black

Water table level = 85 cm (February 07)

Sulfuric material

Sulfidic material

Excavation of sulfidic material in Finniss River - Acid and metal mobilisation after rain event

Simulation of rewetting

pyrite + air (oxygen) => acid (pH 1– 3) + iron oxides (e.g. yellow-green sideronatrite) iron oxide (e.g. sideronatrite) + water => orange iron oxides (e.g. schwertmannite)

Changes in extent of ASS in Lake Alexandrina resulting from lowering water levels

Map showing "current" distribution of ASS in Currency Creek, Finniss River, and Black Swamp

Map showing "current" distribution of ASS in Currency Creek, Finniss River, and Black Swamp

Summary of Lower Lakes outcomes

Currently ~2,000 ha of sulfuric material is verified in Lower Lakes

This equates to ~480,000 tonnes of H_2SO_4 already formed

A further drop of 1m in lake water level will result in \sim 33,000 ha of sulfuric material equating to \sim 8,000,000 tonnes of H₂SO₄

Monitoring of ASS is continuing (50 plus sites)

Fitzpatrick, RW, P. Shand, M. Thomas, R.H. Merry, M.D. Raven, S.L Simpson (2008) Acid sulfate soils in subaqueous, waterlogged and drained soil environments of nine wetlands below Blanchetown (Lock 1), South Australia: properties, genesis, risks and management. Prepared for South Australian Murray-Darling Basin Natural Resources Management Board. CSIRO Land and Water Science Report 42/08. CSIRO, Adelaide, 122. pp.

http://www.clw.csiro.au/publications/science/2008/sr42-08.pdf

Fitzpatrick, RW, P. Shand, S Marvanek, R.H. Merry, M. Thomas, S.L Simpson, M.D. Raven and S. McClure (2008) Acid sulfate soils in subaqueous, waterlogged and drained soil environments in Lake Albert, Lake Alexandrina and River Murray below Blanchetown (Lock 1): properties, distribution, genesis, risks and management. Prepared for Department of Environment and Heritage, SA. CSIRO Land and Water Science Report 46/08. CSIRO, Adelaide, 167. pp.

http://www.clw.csiro.au/publications/science/2008/sr46-08.pdf

Thank you

Special thanks to:

HUGE TEAM + NETWORKS:

CSIRO – support staff (key managers + routine laboratories) CSIRO – research staff (mineralogy, chemistry, GIS, Field staff => late hours!! - -) PhD students NatCASS committee members Agencies + Clients (SA DEH, MDBA, SA MDB NRMB, EPA, DEWHA) CSIRO Land and Water **Rob Fitzpatrick Phone +61-8-8303 8511 Email Rob.Fitzpatrick@csiro.au Web www.clw.csiro.au**

What are acid sulfate soils?

What happens when pyrite in soils or sediments are disturbed or exposed?

 $\text{FeS}_2 + \frac{15}{4}O_2 + \frac{7}{2}H_2O \rightarrow \text{Fe(OH)}_3 + 2SO_4^{2-} + 4H^+$ pyrite + oxygen + water \rightarrow iron (aq) + sulfuric acid (aq)

Release and export of:

- Acid
- Iron
- Aluminium
- Other metals and heavy metals
- Consumption of oxygen
- Generation of monosulfidic black ooze

